Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67.976
Filtrar
Mais filtros








Intervalo de ano de publicação
1.
Sci Data ; 11(1): 377, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38609426

RESUMO

Freshwater mussels of the order Unionida are a global conservation concern. Species of this group are strictly freshwater, sessile, slow-growing animals and, extremely sensitive to environmental changes. Human-mediated changes in freshwater habitats are imposing enormous pressure on the survival of freshwater mussels. Although a few flagship species are protected in Europe, other highly imperilled species receive much less attention. Moreover, knowledge about biology, ecology, and evolution and proper conservation assessments of many European species are still sparse. This knowledge gap is further aggravated by the lack of genomic resources available, which are key tools for conservation. Here we present the transcriptome assembly of Unio elongatulus C. Pfeiffer, 1825, one of the least studied European freshwater mussels. Using the individual sequencing outputs from eight physiologically representative mussel tissues, we provide an annotated panel of tissue-specific Relative Gene Expression profiles. These resources are pivotal to studying the species' biological and ecological features, as well as helping to understand its vulnerability to current and future threats.


Assuntos
Transcriptoma , Unio , Animais , Europa (Continente) , Água Doce , Unio/genética
2.
Plant Mol Biol ; 114(3): 39, 2024 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-38615069

RESUMO

Plants and microorganisms establish beneficial associations that can improve their development and growth. Recently, it has been demonstrated that bacteria isolated from the skin of amphibians can contribute to plant growth and defense. However, the molecular mechanisms involved in the beneficial effect for the host are still unclear. In this work, we explored whether bacteria isolated from three tropical frogs species can contribute to plant growth. After a wide screening, we identified three bacterial strains with high biostimulant potential, capable of modifying the root structure of Arabidopsis thaliana plants. In addition, applying individual bacterial cultures to Solanum lycopersicum plants induced an increase in their growth. To understand the effect that these microorganisms have over the host plant, we analysed the transcriptomic profile of A. thaliana during the interaction with the C32I bacterium, demonstrating that the presence of the bacteria elicits a transcriptional response associated to plant hormone biosynthesis. Our results show that amphibian skin bacteria can function as biostimulants to improve agricultural crops growth and development by modifying the plant transcriptomic responses.


Assuntos
Arabidopsis , Solanum lycopersicum , Animais , Transcriptoma , Arabidopsis/genética , Solanum lycopersicum/genética , Anfíbios , Bactérias , Hormônios
3.
J Vis Exp ; (205)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38619271

RESUMO

Over the past decade, single-cell transcriptomics has significantly evolved and become a standard laboratory method for simultaneous analysis of gene expression profiles of individual cells, allowing the capture of cellular diversity. In order to overcome limitations posed by difficult-to-isolate cell types, an alternative approach aiming at recovering single nuclei instead of intact cells can be utilized for sequencing, making transcriptome profiling of individual cells universally applicable. These techniques have become a cornerstone in the study of brain organoids, establishing them as models of the developing human brain. Leveraging the potential of single-cell and single-nucleus transcriptomics in brain organoid research, this protocol presents a step-by-step guide encompassing key procedures such as organoid dissociation, single-cell or nuclei isolation, library preparation and sequencing. By implementing these alternative approaches, researchers can obtain high-quality datasets, enabling the identification of neuronal and non-neuronal cell types, gene expression profiles, and cell lineage trajectories. This facilitates comprehensive investigations into cellular processes and molecular mechanisms shaping brain development.


Assuntos
Encéfalo , Transcriptoma , Humanos , Organoides , Perfilação da Expressão Gênica , Núcleo Celular
4.
Sci Rep ; 14(1): 8708, 2024 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622173

RESUMO

Recent work has revealed an important role for rare, incompletely penetrant inherited coding variants in neurodevelopmental disorders (NDDs). Additionally, we have previously shown that common variants contribute to risk for rare NDDs. Here, we investigate whether common variants exert their effects by modifying gene expression, using multi-cis-expression quantitative trait loci (cis-eQTL) prediction models. We first performed a transcriptome-wide association study for NDDs using 6987 probands from the Deciphering Developmental Disorders (DDD) study and 9720 controls, and found one gene, RAB2A, that passed multiple testing correction (p = 6.7 × 10-7). We then investigated whether cis-eQTLs modify the penetrance of putatively damaging, rare coding variants inherited by NDD probands from their unaffected parents in a set of 1700 trios. We found no evidence that unaffected parents transmitting putatively damaging coding variants had higher genetically-predicted expression of the variant-harboring gene than their child. In probands carrying putatively damaging variants in constrained genes, the genetically-predicted expression of these genes in blood was lower than in controls (p = 2.7 × 10-3). However, results for proband-control comparisons were inconsistent across different sets of genes, variant filters and tissues. We find limited evidence that common cis-eQTLs modify penetrance of rare coding variants in a large cohort of NDD probands.


Assuntos
Transtornos do Neurodesenvolvimento , Polimorfismo de Nucleotídeo Único , Criança , Humanos , Penetrância , Locos de Características Quantitativas/genética , Transtornos do Neurodesenvolvimento/genética , Transcriptoma
5.
Sci Rep ; 14(1): 8628, 2024 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622175

RESUMO

Peripheral blood RNA profiling, which can reveal systemic changes in gene expression and immune responses to disease onset and progression, is a powerful tool for diagnosis and biomarker discovery. This technique usually requires high quality RNA, which is only obtainable from fresh blood, or frozen blood that has been collected in special RNA-stabilisation systems. The current study aimed to develop a novel protocol to extract high quality RNA from frozen blood that had been collected in the conventional EDTA tubes. We determined that thawing EDTA blood in the presence of cell lysis/RNA stabilisation buffers (Paxgene or Nucleospin) significantly improved RNA quality (RIN) from below 5 to above 7, which to date has not been shown possible. The EDTA-Nucleospin protocol resulted in 5 times higher yield than the EDTA-Paxgene-PreAnalytix method. The average RIN and mRNA expression levels of five different genes including 18 s, ACTB, MCP1, TNFa and TXNIP using this protocol were also indifferent to those from Paxgene blood, suggesting similar RNA quality and blood transcriptome. Moreover, the protocol allows DNA to be extracted simultaneously. In conclusion, we have developed a practical and efficient protocol to extract high quality, high yield RNA from frozen EDTA blood.


Assuntos
Perfilação da Expressão Gênica , RNA , RNA/genética , Ácido Edético/farmacologia , Perfilação da Expressão Gênica/métodos , Coleta de Amostras Sanguíneas/métodos , Transcriptoma
6.
Plant Cell Rep ; 43(5): 117, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622429

RESUMO

KEY MESSAGE: We constructed a gene expression atlas and co-expression network for potatoes and identified several novel genes associated with various agronomic traits. This resource will accelerate potato genetics and genomics research. Potato (Solanum tuberosum L.) is the world's most crucial non-cereal food crop and ranks third in food production after wheat and rice. Despite the availability of several potato transcriptome datasets at public databases like NCBI SRA, an effort has yet to be put into developing a global transcriptome atlas and a co-expression network for potatoes. The objectives of our study were to construct a global expression atlas for potatoes using publicly available transcriptome datasets, identify housekeeping and tissue-specific genes, construct a global co-expression network and identify co-expression clusters, investigate the transcriptional complexity of genes involved in various essential biological processes related to agronomic traits, and provide a web server (StCoExpNet) to easily access the newly constructed expression atlas and co-expression network to investigate the expression and co-expression of genes of interest. In this study, we used data from 2299 publicly available potato transcriptome samples obtained from 15 different tissues to construct a global transcriptome atlas. We found that roughly 87% of the annotated genes exhibited detectable expression in at least one sample. Among these, we identified 281 genes with consistent and stable expression levels, indicating their role as housekeeping genes. Conversely, 308 genes exhibited marked tissue-specific expression patterns. We exemplarily linked some co-expression clusters to important agronomic traits of potatoes, such as self-incompatibility, anthocyanin biosynthesis, tuberization, and defense responses against multiple pathogens. The dataset compiled here constitutes a new resource (StCoExpNet), which can be accessed at https://stcoexpnet.julius-kuehn.de . This transcriptome atlas and the co-expression network will accelerate potato genetics and genomics research.


Assuntos
Solanum tuberosum , Solanum tuberosum/genética , Solanum tuberosum/metabolismo , Fenótipo , Transcriptoma/genética , Genômica
7.
Int J Mol Sci ; 25(7)2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38612491

RESUMO

Meat color traits directly influence consumer acceptability and purchasing decisions. Nevertheless, there is a paucity of comprehensive investigation into the genetic mechanisms underlying meat color traits in pigs. Utilizing genome-wide association studies (GWAS) on five meat color traits and the detection of selection signatures in pig breeds exhibiting distinct meat color characteristics, we identified a promising candidate SNP, 6_69103754, exhibiting varying allele frequencies among pigs with different meat color characteristics. This SNP has the potential to affect the redness and chroma index values of pork. Moreover, transcriptome-wide association studies (TWAS) analysis revealed the expression of candidate genes associated with meat color traits in specific tissues. Notably, the largest number of candidate genes were observed from transcripts derived from adipose, liver, lung, spleen tissues, and macrophage cell type, indicating their crucial role in meat color development. Several shared genes associated with redness, yellowness, and chroma indices traits were identified, including RINL in adipose tissue, ENSSSCG00000034844 and ITIH1 in liver tissue, TPX2 and MFAP2 in lung tissue, and ZBTB17, FAM131C, KIFC3, NTPCR, and ENGSSSCG00000045605 in spleen tissue. Furthermore, single-cell enrichment analysis revealed a significant association between the immune system and meat color. This finding underscores the significance of the immune system associated with meat color. Overall, our study provides a comprehensive analysis of the genetic mechanisms underlying meat color traits, offering valuable insights for future breeding efforts aimed at improving meat quality.


Assuntos
Estudo de Associação Genômica Ampla , Transcriptoma , Animais , Suínos/genética , Tecido Adiposo , Adiposidade , Carne
8.
Int J Mol Sci ; 25(7)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38612549

RESUMO

Erythritol has shown excellent insecticidal performance against a wide range of insect species, but the molecular mechanism by which it causes insect mortality and sterility is not fully understood. The mortality and sterility of Drosophila melanogaster were assessed after feeding with 1M erythritol for 72 h and 96 h, and gene expression profiles were further compared through RNA sequencing. Enrichment analysis of GO and KEGG revealed that expressions of the adipokinetic hormone gene (Akh), amylase gene (Amyrel), α-glucosidase gene (Mal-B1/2, Mal-A1-4, Mal-A7/8), and triglyceride lipase gene (Bmm) were significantly up-regulated, while insulin-like peptide genes (Dilp2, Dilp3 and Dilp5) were dramatically down-regulated. Seventeen genes associated with eggshell assembly, including Dec-1 (down 315-fold), Vm26Ab (down 2014-fold) and Vm34Ca (down 6034-fold), were significantly down-regulated or even showed no expression. However, there were no significant differences in the expression of three diuretic hormone genes (DH44, DH31, CAPA) and eight aquaporin genes (Drip, Big brain, AQP, Eglp1, Eglp2, Eglp3, Eglp4 and Prip) involved in osmolality regulation (all p value > 0.05). We concluded that erythritol, a competitive inhibitor of α-glucosidase, severely reduced substrates and enzyme binding, inhibiting effective carbohydrate hydrolysis in the midgut and eventually causing death due to energy deprivation. It was clear that Drosophila melanogaster did not die from the osmolality of the hemolymph. Our findings elucidate the molecular mechanism underlying the mortality and sterility in Drosophila melanogaster induced by erythritol feeding. It also provides an important theoretical basis for the application of erythritol as an environmentally friendly pesticide.


Assuntos
Proteínas de Drosophila , Infertilidade , Animais , Feminino , Transcriptoma , Drosophila melanogaster/genética , Oviposição , alfa-Glucosidases , Perfilação da Expressão Gênica , Eritritol/farmacologia , Amilases , Proteínas de Drosophila/genética
9.
Int J Mol Sci ; 25(7)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38612561

RESUMO

Two anti-fibrotic drugs, pirfenidone (PFD) and nintedanib (NTD), are currently used to treat idiopathic pulmonary fibrosis (IPF). Peripheral blood mononuclear cells (PBMCs) are immunocompetent cells that could orchestrate cell-cell interactions associated with IPF pathogenesis. We employed RNA sequencing to examine the transcriptome signature in the bulk PBMCs of patients with IPF and the effects of anti-fibrotic drugs on these signatures. Differentially expressed genes (DEGs) between "patients with IPF and healthy controls" and "before and after anti-fibrotic treatment" were analyzed. Enrichment analysis suggested that fatty acid elongation interferes with TGF-ß/Smad signaling and the production of oxidative stress since treatment with NTD upregulates the fatty acid elongation enzymes ELOVL6. Treatment with PFD downregulates COL1A1, which produces wound-healing collagens because activated monocyte-derived macrophages participate in the production of collagen, type I, and alpha 1 during tissue damage. Plasminogen activator inhibitor-1 (PAI-1) regulates wound healing by inhibiting plasmin-mediated matrix metalloproteinase activation, and the inhibition of PAI-1 activity attenuates lung fibrosis. DEG analysis suggested that both the PFD and NTD upregulate SERPINE1, which regulates PAI-1 activity. This study embraces a novel approach by using RNA sequencing to examine PBMCs in IPF, potentially revealing systemic biomarkers or pathways that could be targeted for therapy.


Assuntos
Fibrose Pulmonar Idiopática , Inibidor 1 de Ativador de Plasminogênio , Humanos , Leucócitos Mononucleares , Transcriptoma , Fibrose Pulmonar Idiopática/tratamento farmacológico , Fibrose Pulmonar Idiopática/genética , Ácidos Graxos
10.
Int J Mol Sci ; 25(7)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38612643

RESUMO

Breast cancer is a leading cause of cancer-related deaths among women. Cisplatin is used for treatment, but the development of resistance in cancer cells is a significant concern. This study aimed to investigate changes in the transcriptomes of cisplatin-resistant MCF7 cells. We conducted RNA sequencing of cisplatin-resistant MCF7 cells, followed by differential expression analysis and bioinformatic investigations to identify changes in gene expression and modified signal transduction pathways. We examined the size and quantity of extracellular vesicles. A total of 724 genes exhibited differential expression, predominantly consisting of protein-coding RNAs. Notably, two long non-coding RNAs (lncRNAs), NEAT1 and MALAT, were found to be dysregulated. Bioinformatic analysis unveiled dysregulation in processes related to DNA synthesis and repair, cell cycle regulation, immune response, and cellular communication. Additionally, modifications were observed in events associated with extracellular vesicles. Conditioned media from resistant cells conferred resistance to wild-type cells in vitro. Furthermore, there was an increase in the number of vesicles in cisplatin-resistant cells. Cisplatin-resistant MCF7 cells displayed differential RNA expression, including the dysregulation of NEAT1 and MALAT long non-coding RNAs. Key processes related to DNA and extracellular vesicles were found to be altered. The increased number of extracellular vesicles in resistant cells may contribute to acquired resistance in wild-type cells.


Assuntos
Cisplatino , Transcriptoma , Feminino , Humanos , Cisplatino/farmacologia , Células MCF-7 , Perfilação da Expressão Gênica , DNA
11.
Int J Mol Sci ; 25(7)2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38612681

RESUMO

Small-molecule positive allosteric modulator 1 (SPAM1), which targets pituitary adenylate cyclase-activating polypeptide receptor 1 (PAC1-R), has been found to have a neuroprotective effect, and the underlying mechanism was explored in this study. First, using a D-galactose (D-gal)-induced aging mouse model, we confirmed that SPAM1 improves the structure of the hippocampal dentate gyrus and restores the number of neurons. Compared with D-gal model mice, SPAM1-treated mice showed up-regulated expression of Sirtuin 6 (SIRT6) and Lamin B1 and down-regulated expression of YinYang 1 (YY1) and p16. A similar tendency was observed in senescent RGC-5 cells induced by long-term culture, indicating that SPAM1 exhibits significant in vitro and in vivo anti-senescence activity in neurons. Then, using whole-transcriptome sequencing and proteomic analysis, we further explored the mechanism behind SPAM1's neuroprotective effects and found that SPAM is involved in the longevity-regulating pathway. Finally, the up-regulation of neurofilament light and medium polypeptides indicated by the proteomics results was further confirmed by Western blotting. These results help to lay a pharmacological network foundation for the use of SPAM1 as a potent anti-aging therapeutic drug to combat neurodegeneration with anti-senescence, neuroprotective, and nerve regeneration activity.


Assuntos
Proteômica , Transcriptoma , Animais , Camundongos , Perfilação da Expressão Gênica , Envelhecimento/genética , Longevidade , Galactose/farmacologia
12.
Int J Mol Sci ; 25(7)2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38612697

RESUMO

Tertiary lymphoid structures (TLSs) are organized aggregates of immune cells in non-lymphoid tissues and are associated with a favorable prognosis in tumors. However, TLS markers remain inconsistent, and the utilization of machine learning techniques for this purpose is limited. To tackle this challenge, we began by identifying TLS markers through bioinformatics analysis and machine learning techniques. Subsequently, we leveraged spatial transcriptomic data from Gene Expression Omnibus (GEO) and built two support vector classifier models for TLS prediction: one without feature selection and the other using the marker genes. The comparable performances of these two models confirm the efficacy of the selected markers. The majority of the markers are immunoglobulin genes, demonstrating their importance in the identification of TLSs. Our research has identified the markers of TLSs using machine learning methods and constructed a model to predict TLS location, contributing to the detection of TLS and holding the promising potential to impact cancer treatment strategies.


Assuntos
Estruturas Linfoides Terciárias , Humanos , Estruturas Linfoides Terciárias/genética , Perfilação da Expressão Gênica , Transcriptoma , Biologia Computacional , Aprendizado de Máquina
13.
Int J Mol Sci ; 25(7)2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38612713

RESUMO

Leaf senescence, a pivotal process in plants, directly influences both crop yield and nutritional quality. Foxtail millet (Setaria italica) is a C4 model crop renowned for its exceptional nutritional value and stress tolerance characteristics. However, there is a lack of research on the identification of senescence-associated genes (SAGs) and the underlying molecular regulatory mechanisms governing this process. In this study, a dark-induced senescence (DIS) experimental system was applied to investigate the extensive physiological and transcriptomic changes in two foxtail millet varieties with different degrees of leaf senescence. The physiological and biochemical indices revealed that the light senescence (LS) variety exhibited a delayed senescence phenotype, whereas the severe senescence (SS) variety exhibited an accelerated senescence phenotype. The most evident differences in gene expression profiles between these two varieties during DIS included photosynthesis, chlorophyll, and lipid metabolism. Comparative transcriptome analysis further revealed a significant up-regulation of genes related to polysaccharide and calcium ion binding, nitrogen utilization, defense response, and malate metabolism in LS. In contrast, the expression of genes associated with redox homeostasis, carbohydrate metabolism, lipid homeostasis, and hormone signaling was significantly altered in SS. Through WGCNA and RT-qPCR analyses, we identified three SAGs that exhibit potential negative regulation towards dark-induced leaf senescence in foxtail millet. This study establishes the foundation for a further comprehensive examination of the regulatory network governing leaf senescence and provides potential genetic resources for manipulating senescence in foxtail millet.


Assuntos
Setaria (Planta) , Transcriptoma , Setaria (Planta)/genética , Senescência Vegetal , Perfilação da Expressão Gênica , Clorofila
14.
Int J Mol Sci ; 25(7)2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38612803

RESUMO

Immuno-oncology has gained momentum with the approval of antibodies with clinical activities in different indications. Unfortunately, for anti-PD (L)1 agents in monotherapy, only half of the treated population achieves a clinical response. For other agents, such as anti-CTLA4 antibodies, no biomarkers exist, and tolerability can limit administration. In this study, using publicly available genomic datasets, we evaluated the expression of the macrophage scavenger receptor-A (SR-A) (MSR1) and its association with a response to check-point inhibitors (CPI). MSR1 was associated with the presence of macrophages, dendritic cells (DCs) and neutrophils in most of the studied indications. The presence of MSR1 was associated with macrophages with a pro-tumoral phenotype and correlated with TIM3 expression. MSR1 predicted favorable overall survival in patients treated with anti-PD1 (HR: 0.56, FDR: 1%, p = 2.6 × 10-5), anti PD-L1 (HR: 0.66, FDR: 20%, p = 0.00098) and anti-CTLA4 (HR: 0.37, FDR: 1%, p = 4.8 × 10-5). When specifically studying skin cutaneous melanoma (SKCM), we observed similar effects for anti-PD1 (HR: 0.65, FDR: 50%, p = 0.0072) and anti-CTLA4 (HR: 0.35, FDR: 1%, p = 4.1 × 10-5). In a different dataset of SKCM patients, the expression of MSR1 predicted a clinical response to anti-CTLA4 (AUC: 0.61, p = 2.9 × 10-2). Here, we describe the expression of MSR1 in some solid tumors and its association with innate cells and M2 phenotype macrophages. Of note, the presence of MSR1 predicted a response to CPI and, particularly, anti-CTLA4 therapies in different cohorts of patients. Future studies should prospectively explore the association of MSR1 expression and the response to anti-CTLA4 strategies in solid tumors.


Assuntos
Melanoma , Neoplasias Cutâneas , Humanos , Melanoma/tratamento farmacológico , Melanoma/genética , Perfilação da Expressão Gênica , Transcriptoma , Oncologia , Receptores Depuradores Classe A
15.
Int J Mol Sci ; 25(7)2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38612822

RESUMO

Tomato brown rugose fruit virus (ToBRFV) is a newly-emerging tobamovirus which was first reported on tomatoes in Israel and Jordan, and which has now spread rapidly in Asia, Europe, North America, and Africa. ToBRFV can overcome the resistance to other tobamoviruses conferred by tomato Tm-1, Tm-2, and Tm-22 genes, and it has seriously affected global crop production. The rapid and comprehensive transcription reprogramming of host plant cells is the key to resisting virus attack, but there have been no studies of the transcriptome changes induced by ToBRFV in tomatoes. Here, we made a comparative transcriptome analysis between tomato leaves infected with ToBRFV for 21 days and those mock-inoculated as controls. A total of 522 differentially expressed genes were identified after ToBRFV infection, of which 270 were up-regulated and 252 were down-regulated. Functional analysis showed that DEGs were involved in biological processes such as response to wounding, response to stress, protein folding, and defense response. Ten DEGs were selected and verified by qRT-PCR, confirming the reliability of the high-throughput sequencing data. These results provide candidate genes or signal pathways for the response of tomato leaves to ToBRFV infection.


Assuntos
Solanum lycopersicum , Tobamovirus , Viroses , Solanum lycopersicum/genética , Frutas , Reprodutibilidade dos Testes , Perfilação da Expressão Gênica , Transcriptoma
16.
Int J Mol Sci ; 25(7)2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38612939

RESUMO

Sperm cryopreservation is a procedure widely used to store gametes for later use, to preserve fertility in patients prior to gonadotoxic treatments or surgery, and for sperm donation programs. The purpose of the study was to assess the impact of cryopreservation on human sperm transcriptome. Semen samples were collected from 13 normospermic men. Each sample was divided into two aliquots. The total RNA was immediately extracted from one aliquot. The second aliquot was frozen and total RNA was extracted after a week of storage in liquid nitrogen. The RNA samples were randomized in four pools, each of six donors, and analyzed by microarrays. The paired Significance Analysis of Microarray was performed. We found 219 lower abundant transcripts and 28 higher abundant transcripts in cryopreserved sperm than fresh sperm. The gene ontology analysis disclosed that cryopreservation alters transcripts of pathways important for fertility (i.e., spermatogenesis, sperm motility, mitochondria function, fertilization, calcium homeostasis, cell differentiation, and early embryo development), although the increase of some transcripts involved in immune response can compensate for the harmful effects of freezing.


Assuntos
Sêmen , Transcriptoma , Humanos , Masculino , Motilidade dos Espermatozoides/genética , Espermatozoides , Criopreservação , RNA
17.
J Mol Neurosci ; 74(2): 42, 2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38613644

RESUMO

Alzheimer's disease (AD) is a severe neurological illness that causes memory loss and is a global problem. The calcium hypothesis recently steadily evolved in AD. The prospective targets for calcium homeostasis therapy, however, are limited, and gene expression-level research connected to calcium homeostasis in AD remains hazy. In this study, we analyzed the microarray dataset (GSE132903) taken from the Gene Expression Omnibus (GEO) database to investigate calcium homeostasis-related genes for AD. Using immunoblot analysis, we examined the association of ITPKB with inflammation in AD. Additionally, the immunofluorescence technique was employed to assess the impact of pharmacological inhibition of ITPKB on the amyloid-ß (Aß) plaque deposition in APP/PS1 mice. This article's further exploration of calcium homeostasis-related genes has propelled the validation of the calcium homeostasis theory in AD.


Assuntos
Doença de Alzheimer , Placa Amiloide , Animais , Camundongos , Placa Amiloide/genética , Transcriptoma , Cálcio , Doença de Alzheimer/genética , Modelos Animais , Homeostase
18.
Sci Data ; 11(1): 364, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38605113

RESUMO

Peanut (Arachis hypogaea) showcases geocarpic behavior, transitioning from aerial flowering to subterranean seed development. We recently obtained an atavistic variant of this species, capable of producing aerial and subterranean pods on a single plant. Notably, although these pod types share similar vigor levels, they exhibit distinct differences in their physical aspects, such as pod size, color, and shell thickness. We constructed 63 RNA-sequencing datasets, comprising three biological replicates for each of 21 distinct tissues spanning six developmental stages for both pod types, providing a rich tapestry of the pod development process. This comprehensive analysis yielded an impressive 409.36 Gb of clean bases, facilitating the detection of 42,401 expressed genes. By comparing the transcriptomic data of the aerial and subterranean pods, we identified many differentially expressed genes (DEGs), highlighting their distinct developmental pathways. By providing a detailed workflow from the initial sampling to the final DEGs, this study serves as an important resource, paving the way for future research into peanut pod development and aiding transcriptome-based expression profiling and candidate gene identification.


Assuntos
Arachis , Regulação da Expressão Gênica de Plantas , Transcriptoma , Arachis/genética , Arachis/crescimento & desenvolvimento , Perfilação da Expressão Gênica , Sementes/genética , Sementes/crescimento & desenvolvimento
19.
Sci Rep ; 14(1): 8486, 2024 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-38605105

RESUMO

In this study, we compared the transcriptome of longissimus dorsi muscle between Guizhou Xiang pigs (XP) and Western commercial Large White pigs (LW), which show diffirent meat quality between them. In terms of meat quality traits, the pH 45 min, color score, backfat thickness, and intramuscular fat (IMF) content were higher in Xiang pigs than in Large White pigs (P < 0.01), while the drip loss, lean meat percentage, shear force, and longissimus dorsi muscle area of Xiang pigs were lower than that of Large White pigs (P < 0.01). Nutrients such as monounsaturated fatty acid (MUFA), total amino acids (TAA), delicious amino acids (DAA) and essential amino acids (EAA) in Xiang pigs were higher than that in Large White pigs, and the proportion of polyunsaturated fatty acid (PUFA) of Xiang pigs was significantly lower than Large White pigs (P < 0.01). Transcriptome analysis identified 163 up-regulated genes and 88 genes down-regulated in Xiang pigs longissimus dorsi muscle. Combined with the correlation analysis and quantitative trait locis (QTLs) affecting meat quality, a total of 227 DEGs were screened to be significantly associated with meat quality values. Enrichment analysis indicated that numerous members of genes were gathered in muscle development, adipogenesis, amino acid metabolism, fatty acid metabolism and synthesis. Of those, 29 genes were identified to be hub genes that might be related with the meat quality of Xiang pig, such as MYOD1, ACTB, ASNS, FOXO1, ARG2, SLC2A4, PLIN2, and SCD. Thus, we screened and identified the potential functional genes for the formation of meat quality in Xiang pigs, which provides a corresponding theoretical basis for the study of the molecular regulatory mechanism of pork quality and the improvement of pork quality.


Assuntos
Músculo Esquelético , Transcriptoma , Suínos/genética , Animais , Músculo Esquelético/metabolismo , Perfilação da Expressão Gênica , Carne , Aminoácidos/metabolismo , China
20.
BMC Plant Biol ; 24(1): 276, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38605285

RESUMO

BACKGROUND: Stephania kwangsiensis Lo (Menispermaceae) is a well-known Chinese herbal medicine, and its bulbous stems are used medicinally. The storage stem of S. kwangsiensis originated from the hypocotyls. To date, there are no reports on the growth and development of S. kwangsiensis storage stems. RESULTS: The bulbous stem of S. kwangsiensis, the starch diameter was larger at the stable expanding stage (S3T) than at the unexpanded stage (S1T) or the rapidly expanding stage (S2T) at the three different time points. We used ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) and Illumina sequencing to identify key genes involved in bulbous stem development. A large number of differentially accumulated metabolites (DAMs) and differentially expressed genes (DEGs) were identified. Based on the differential expression profiles of the metabolites, alkaloids, lipids, and phenolic acids were the top three differentially expressed classes. Compared with S2T, significant changes in plant signal transduction and isoquinoline alkaloid biosynthesis pathways occurred at both the transcriptional and metabolic levels in S1T. In S2T compared with S3T, several metabolites involved in tyrosine metabolism were decreased. Temporal analysis of S1T to S3T indicated the downregulation of phenylpropanoid biosynthesis, including lignin biosynthesis. The annotation of key pathways showed an up-down trend for genes and metabolites involved in isoquinoline alkaloid biosynthesis, whereas phenylpropanoid biosynthesis was not completely consistent. CONCLUSIONS: Downregulation of the phenylpropanoid biosynthesis pathway may be the result of carbon flow into alkaloid synthesis and storage of lipids and starch during the development of S. kwangsiensis bulbous stems. A decrease in the number of metabolites involved in tyrosine metabolism may also lead to a decrease in the upstream substrates of phenylpropane biosynthesis. Downregulation of lignin synthesis during phenylpropanoid biosynthesis may loosen restrictions on bulbous stem expansion. This study provides the first comprehensive analysis of the metabolome and transcriptome profiles of S. kwangsiensis bulbous stems. These data provide guidance for the cultivation, breeding, and harvesting of S. kwangsiensis.


Assuntos
Alcaloides , Plantas Medicinais , Stephania , Stephania/química , Stephania/metabolismo , Plantas Medicinais/metabolismo , Cromatografia Líquida/métodos , Lignina/metabolismo , Espectrometria de Massas em Tandem , Melhoramento Vegetal , Perfilação da Expressão Gênica , Transcriptoma , Alcaloides/metabolismo , Amido/metabolismo , Isoquinolinas/metabolismo , Tirosina/metabolismo , Lipídeos , Regulação da Expressão Gênica de Plantas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA